Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 575
Filtrar
1.
Sci Total Environ ; 926: 172114, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38561127

RESUMO

The microbial hosts of antibiotic resistance genes (ARGs) found epiphytically on plant materials could grow and flourish during silage fermentation. This study employed metagenomic analysis and elucidated the occurrence and transmission mechanisms of ARGs and their microbial hosts in whole-crop corn silage inoculated with homofermentative strain Lactiplantibacillus plantarum or heterofermentative strain Lentilactobacillus buchneri ensiled under different temperature (20 and 30 °C). The results revealed that the corn silage was dominated by Lactobacillus, Leuconostoc, Lentilactobacillus, and Latilactobacillus. Both the ensiling temperature and inoculation had greatly modified the silage microbiota. However, regardless of the ensiling temperature, L. buchneri had significantly higher ARGs, while it only exhibited significantly higher mobile genetic elements (MGEs) in low temperature treatments. The microbial community of the corn silage hosted highly diverse form of ARGs, which were primarily MacB, RanA, bcrA, msbA, TetA (58), and TetT and mainly corresponded to macrolides and tetracyclines drug classes. Plasmids were identified as the most abundant MGEs with significant correlation with some high-risk ARGs (tetM, TolC, mdtH, and NorA), and their abundances have been reduced by ensiling process. Furthermore, higher temperature and L. buchneri reduced abundances of high-risk ARGs by modifying their hosts and reduced their transmission in the silage. Therefore, ensiling, L. buchneri inoculation and higher storage temperature could improve the biosafety of corn silage.


Assuntos
Lactobacillales , Silagem , Silagem/análise , Silagem/microbiologia , Zea mays/microbiologia , Lactobacillales/genética , Antibacterianos , Temperatura , Fermentação
2.
Microb Biotechnol ; 17(4): e14454, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38568756

RESUMO

This study investigates the effectiveness of an exopolysaccharide (EPS)-producing strain (Lactiplantibacillus plantarum L75) alone or in combination with Saccharomyces cerevisiae on the fermentation characteristics, antioxidant capacities and microbial community successions of oat silage stored at various temperatures. A rapid decrease in pH and lactic acid accumulation was observed in silages treated with L. plantarum and S. cerevisiae (LS) as early as 3 days of ensiling (p < 0.05). Over the ensiling period of 7-60 days, L. plantarum (L)-inoculated groups showed the lowest pH, lowest ammonia nitrogen and the highest amount of lactic acid regardless of the storage temperatures. When the oat silage was stored at 15°C, LS-inoculated group exhibited a higher superoxide dismutase (SOD) activity than control and L-inoculated group. Furthermore, the proportion of Lactiplantibacillus in the combined inoculation group increased by 65.42% compared to the L-inoculated group (33.26%). Fungal community data revealed abundant Penicillium carneum in the control and L-inoculated groups stored at 15°C. Conclusively, these results showed that combined inoculation of L. plantarum L75 and S. cerevisiae improved the fermentation quality of oat silage at 15°C, thus proposing a technique for enhancing the fermentation quality of silage in regions with low temperatures during harvest season.


Assuntos
Lactobacillus plantarum , Silagem , Silagem/microbiologia , Saccharomyces cerevisiae , Lactobacillus , Avena , Fermentação , Temperatura , Ácido Láctico
3.
J Environ Manage ; 354: 120327, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38359627

RESUMO

Sweet sorghum, as a seasonal energy crop, is rich in cellulose and hemicellulose that can be converted into biofuels. This work aims at investigating the effects of synergistic regulation of Pichia anomala and cellulase on ensiling quality and microbial community of sweet sorghum silages as a storage and pretreatment method. Furthermore, the combined pretreatment effects of ensiling and ball milling on sweet sorghum were evaluated by microstructure change and enzymatic hydrolysis. Based on membership function analysis, the combination of P. anomala and cellulase (PA + CE) significantly improved the silage quality by preserving organic components and promoting fermentation characteristics. The bioaugmented ensiling with PA + CE restructured the bacterial community by facilitating Lactobacillus and inhibiting undesired microorganisms by killer activity of P. anomala. The combined bioaugmented ensiling pretreatment with ball milling significantly increased the enzymatic hydrolysis efficiency (EHE) to 71%, accompanied by the increased specific surface area and decreased pore size/crystallinity of sweet sorghum. Moreover, the EHE after combined pretreatment was increased by 1.37 times compared with raw material. Hence, the combined pretreatment was demonstrated as a novel strategy to effectively enhance enzymatic hydrolysis of sweet sorghum.


Assuntos
Celulase , Saccharomycetales , Sorghum , Hidrólise , Sorghum/química , Sorghum/metabolismo , Silagem/análise , Silagem/microbiologia , Celulase/metabolismo , Fermentação
4.
Microbiol Spectr ; 12(1): e0303223, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38084975

RESUMO

IMPORTANCE: Feed shortage in the tropics is a major constraint to the production of livestock products such as milk and meat. In order to effectively utilize of local feed resources, the selected lactic acid bacteria (LAB) strain was used to prepare Napier grass and sugarcane top silage. The results showed that the two silages inoculated with LAB formed a co-occurrence microbial network dominated by Lactiplantibacillus during the fermentation process, regulated the microbial community structure and metabolic pathways, and improved the silage fermentation quality. This is of great significance for alleviating feed shortage and promoting sustainable production of livestock.


Assuntos
Lactobacillales , Saccharum , Animais , Silagem/análise , Silagem/microbiologia , Fermentação , Lactobacillus/genética , Lactobacillus/metabolismo , África Austral , Gado
5.
Microbiol Spectr ; 11(6): e0222823, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37947518

RESUMO

IMPORTANCE: Ensiled whole-plant oats are an important feedstuff for ruminants in large parts of the world. Oat silage is rich in dietary fibers, minerals, vitamins, and phytochemicals beneficial to animal health. The fermentation of oat silage is a complex biochemical process that includes interactions between various microorganisms. The activity of many microbes in silage may cause an extensive breakdown of nutrition and lead to undesirable fermentation. Moreover, it is difficult to make high-quality oat silage because the number of epiphytic lactic acid bacterium microflora was lower than the requirement. Understanding the complex microbial community during the fermentation process and its relationship with community functions is therefore important in the context of developing improved fermentation biotechnology systems. These results suggested that the addition of Lactobacillus plantarum or Lactobacillus buchneri regulated the ensiling performance and microbial community in oat silage by shaping the metabolic pathways.


Assuntos
Avena , Microbiota , Animais , Silagem/análise , Silagem/microbiologia , Lactobacillus/metabolismo , Fermentação
6.
J Environ Manage ; 347: 119235, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37806267

RESUMO

Silage as the main forage for ruminants could be a reservoir for antibiotic resistance genes (ARGs) through which these genes got access into the animals' system causing a latent health risk. This study employed metagenomics and investigated the ARGs' fate and transmission mechanism in high-moisture alfalfa silage treated with formic acid bactericide. The results showed that there were 22 ARGs types, in which multidrug, macrolide-lincosamide-streptogramine, bacitracin, beta-lactam, fosmidomycin, kasugamycin, and polymycin resistance genes were the most prevalent ARGs types in the ensiled alfalfa. The natural ensiling process increased ARGs enrichment. Intriguingly, after 5 days of ensiling, formic acid-treated silage reduced ARGs abundances by inhibiting host bacterial and plasmids. Although formic acid bactericide enhanced the fermentation characteristics of the high-moisture alfalfa by lowering silage pH, butyric acid concentration, dry matter losses and proteolysis, it increased ARGs abundances in alfalfa silage owing to increases in abundances of ARGs carriers and transposase after 90 days of ensiling. Notably, several pathogens like Staphylococcus, Clostridium, and Pseudomonas were inferred as potential ARGs hosts in high-moisture alfalfa silage, and high-moisture alfalfa silage may harbor a portion of the clinical ARGs. Fundamentally, microbes were distinguished as the foremost driving factor of ARGs propagation in ensiling microecosystem. In conclusion, although formic acid bactericide improved the fermentation characteristics of high-moisture alfalfa during ensiling and reduced ARGs enrichment at the initial ensiling stage, it increased ARGs enrichment at the end of ensiling.


Assuntos
Antibacterianos , Silagem , Animais , Silagem/análise , Silagem/microbiologia , Antibacterianos/farmacologia , Medicago sativa , Formiatos/farmacologia , Fermentação
7.
Sci Rep ; 13(1): 7302, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147458

RESUMO

The study objective was to evaluate the effects of the addition of exogenous protease on the fermentation and nutritive value of rehydrated corn and sorghum grain silages during various storage periods. Treatments were applied using a 2 × 6 × 3 factorial combination, with 2 types of rehydrated grains (corn and sorghum), 6 doses of the enzyme (0, 0.3, 0.6, 0.9, 1.2, and 1.5%, based on natural matter) and 3 fermentation periods (0, 60, and 90 days) in a completely randomized design, with 4 replications. The protease aspergilopepsin I, of fungal origin, produced by Aspergillus niger, was used. The lactic acid concentration increased linearly as the enzyme dose increased in corn (CG) and sorghum (SG) grain silages, at 60 and 90 days of fermentation. There was an increase in the concentrations of ammonia nitrogen and soluble protein, as well as the in situ starch digestibility in rehydrated CG and SG silages, compared to the treatment without the addition of protease. The addition of 0.3% exogenous protease at the moment of CG ensiling and 0.5% in rehydrated SG increased the proteolytic activity during fermentation, providing an increase in in situ starch digestibility in a shorter storage time.


Assuntos
Silagem , Sorghum , Silagem/microbiologia , Peptídeo Hidrolases/metabolismo , Zea mays/metabolismo , Sorghum/metabolismo , Fermentação , Valor Nutritivo , Amido/metabolismo
8.
Microbiol Spectr ; 11(3): e0070523, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37166312

RESUMO

To investigate community synergy of lactic acid bacteria (LAB) and cleaner fermentation of oat silage, oat silages were prepared with or without (control) commercial LAB inoculants LI1 (containing Lactiplantibacillus plantarum, Lentilactobacillus buchneri, Lacticaseibacillus paracasei, and Pediococcus acidilactici) and LI2 (containing Lactiplantibacillus plantarum and Lentilactobacillus buchneri). The microbial community, LAB synergy, and cleaner fermentation were analyzed at 1, 3, 6, 15, 35, and 90 days of ensiling. The LAB inoculant improved fermentation quality, with significantly (P < 0.05) lower pH, ammonia nitrogen content, and gas production and higher lactic acid and acetic acid contents than those of the control. Enterobacteriaceae was the main bacterial community in early stage of fermentation, which utilizes sugar to produce CO2 gas, causing dry matter (DM) and energy loss. As fermentation progressed, the microbial diversity decreased, and the microbial community shifted from Gram-negative to Gram-positive bacteria. The inoculation of multispecies LAB displayed community synergy; Pediococcus acidilactici formed a dominant community in the early stage of fermentation, which produced an acid and anaerobic environment for the subsequent growth of Lentilactobacillus and Lacticaseibacillus species, thus forming a LAB-dominated microbial community. The predicted functional profile indicated that the silage inoculated with LI1 enhanced the carbohydrate metabolism pathway but inhibited the amino acid metabolism pathway, which played a role in promoting faster lactic acid production, reducing the decomposition of protein to ammonia nitrogen, and improving the fermentation quality of silage. Therefore, oat silage can be processed to high-quality and cleaner fermented feed by using an LAB inoculant, and LI1 showed better efficiency than LI2. IMPORTANCE Oat natural silage is rich in Enterobacteriaceae, increasing gas production and fermentation loss. Lactic acid bacteria interact synergistically to form a dominant community during ensiling. Pediococci grow vigorously in the early stage of fermentation and create an anaerobic environment. Lactobacilli inhibit the harmful microorganisms and result in cleaner fermentation of oat silage.


Assuntos
Inoculantes Agrícolas , Lactobacillales , Lactobacillales/metabolismo , Silagem/análise , Silagem/microbiologia , Inoculantes Agrícolas/metabolismo , Avena/metabolismo , Fermentação , Amônia , Ácido Láctico/metabolismo , Enterobacteriaceae/metabolismo , Nitrogênio
9.
Environ Res ; 231(Pt 2): 116199, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37211182

RESUMO

Making silage is a green process to use the fast-growing water hyacinth (Eichhornia crassipes) biomass. However, the high moisture (∼95%) of the water hyacinth is the biggest challenge to making silage while its effects on fermentation processes are less studied. In this study, water hyacinths silage with different initial moistures were conducted to investigate the fermentation microbial communities and their roles on the silage qualities. Results show that both silages with 70% (S70) and 90% (S90) of initial moistures achieved the target of silage fermentation, however, their microbial processes were significantly different. Their succession directions of microbial communities were different: Plant cells in S70 were destroyed by the air-dry treatment, thus there were more soluble carbohydrates, which helped the inoculated fermentative bacteria become dominant (Lactobacillus spp. > 69%) and produce abundant lactic acid; In contrast, stochastic succession became dominant over time in S90 (NST = 0.79), in which Lactobacillus spp. and Clostridium spp. produced butyric that also obviously decreased the pH and promoted the fermentation process. Different microbial succession led to different metabolic patterns: S70 had stronger starch and sucrose metabolisms while S90 had stronger amino acid and nitrogen metabolisms. Consequently, S70 had higher lactic acid, crude protein and lower ammonia nitrogen and S90 had higher in vitro digestibility of dry matter and higher relative feeding value. Moreover, the variance partitioning analysis indicated that moisture could only explain less information (5.9%) of the microbial assemblage than pH value (41.4%). Therefore, the colonization of acid-producing bacteria and establishment of acidic environment were suggested as the key on the silage fermentation no matter how much is the initial moisture. This work can provide a basis for the future preparation of high-moisture raw biomasses for silage.


Assuntos
Eichhornia , Silagem , Silagem/análise , Silagem/microbiologia , Lactobacillus/metabolismo , Ácido Láctico/metabolismo , Bactérias/metabolismo , Fermentação , Nitrogênio/análise
10.
Appl Microbiol Biotechnol ; 107(11): 3443-3457, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37099058

RESUMO

Alfalfa silage fermentation quality, metabolome, bacterial interactions, and successions as well as their predicted metabolic pathways were explored under different dry matter contents (DM) and lactic acid bacteria (LAB) inoculations. Silages were prepared from alfalfa with DM contents of 304 (LDM) and 433 (HDM) g/kg fresh weight and inoculated with Lactiplantibacillus plantarum (L. plantarum, LP), Pediococcus pentosaceus (P. pentosaceus, PP), or sterile water (control). The silages were stored at a simulated hot climate condition (35°C) and sampled at 0, 7, 14, 30, and 60 days of fermentation. The results revealed that HDM significantly improved the alfalfa silage quality and altered microbial community composition. The GC-TOF-MS analysis discovered 200 metabolites in both LDM and HDM alfalfa silage, mainly consisting of amino acids, carbohydrates, fatty acids, and alcohols. Compared with LP and control, PP-inoculated silages had increased concentrations of lactic acid (P < 0.05) and essential amino acids (threonine and tryptophan) as well as decreased pH, putrescine content, and amino acid metabolism. However, alfalfa silage inoculated with LP had higher proteolytic activities than control and PP-inoculated silage, as revealed by a higher concentration of ammonia nitrogen (NH3-N), and also upregulated amino acid and energy metabolism. HDM content and P. pentosaceus inoculation significantly altered the composition of alfalfa silage microbiota from 7 to 60 days of ensiling. Conclusively, these results indicated that inoculation with PP exhibited great potential in enhancing the fermentation of silage with LDM and HDM via altering the microbiome and metabolome of the ensiled alfalfa, which could help in understanding and improving the ensiling practices under hot climate conditions. KEY POINTS: • HDM improved fermentation quality and declined putrescine content of alfalfa silage • P. pentosaceus inoculation enhanced the fermentation quality of alfalfa silage • P. pentosaceus is an ideal inoculant for alfalfa silage under high temperature.


Assuntos
Medicago sativa , Putrescina , Medicago sativa/microbiologia , Temperatura , Bactérias , Silagem/microbiologia , Fermentação , Metaboloma , Aminoácidos
11.
J Appl Microbiol ; 134(4)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37073111

RESUMO

AIMS: The aim of this study was to investigate the dynamics of bacterial communities and natural fermentation quality in three steppe types [meadow steppe (MS); typical steppe (TS); and desert steppe (DS)] on the Mongolian Plateau. METHODS AND RESULTS: PacBio single molecule with real-time sequencing technology was applied to provide insights into the dynamics of the physicochemical characteristics and the complex microbiome of native grass after 1, 7, 15, and 30 days of fermentation process. The dry matter, crude protein, and water soluble carbohydrate (WSC) contents of the three groups slowly decreased after 1 day of fermentation process, and the lowest WSC concentration after 30 days of ensiling was detected in the DS group compared to that in the MS and TS groups. There was no significant effect of steppe types on lactic acid and butyric acid content (P > 0.05). The pH was higher in the early stages of fermentation. After 30 days of fermentation, the pH of MS and DS dropped to ∼5.60, while TS was as high as 5.94. At different ensiling days, the pH of TS was significantly higher than that of MS (P < 0.05). The ammonia nitrogen content of MS was significantly higher than TS and DS (P < 0.05). During the whole fermentation process, Leuconostoc mesenteroides and Pseudocitrobacter faecalis were the main species of DS, while Enterobacter roggenkampii and Faecalibacterium prausnitzii dominated the fermentation process in MS and TS, respectively. CONCLUSIONS: The fermentation quality of native grass silage of different steppe types was less satisfactory, with the silage quality ranging from DS, MS, and TS in descending order. The epiphytic bacteria dominating the fermentation process differed between steppe types of silage. Leuconostoc mesenteroides as the main strain of DS had a modulating effect on pH and LA content, while the main strains of MS and TS (Enterobacter roggenkampii and Faecalibacterium prausnitzii) dominated the silage without significant effect on improving fermentation characteristics and nutritional quality.


Assuntos
Pradaria , Poaceae , Poaceae/microbiologia , Enterobacter , Carboidratos , Silagem/microbiologia , Fermentação
12.
Viruses ; 15(4)2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37112930

RESUMO

Ensilaging is one of the most common feed preservation processes using lactic acid bacteria to stabilize feed and save feed quality. The silage bacterial community is well known but the role of the virome and its relationship with the bacterial community is scarce. In the present study, metagenomics and amplicon sequencing were used to describe the composition of the bacterial and viral community during a 40-day grass silage preservation. During the first two days, we observed a rapid decrease in the pH and a shift in the bacterial and viral composition. The diversity of the dominant virus operational taxonomic units (vOTUs) decreased throughout the preservation. The changes in the bacterial community resembled the predicted putative host of the recovered vOTUs during each sampling time. Only 10% of the total recovered vOTUs clustered with a reference genome. Different antiviral defense mechanisms were found across the recovered metagenome-assembled genomes (MAGs); however, only a history of bacteriophage infection with Lentilactobacillus and Levilactobacillus was observed. In addition, vOTUs harbored potential auxiliary metabolic genes related to carbohydrate metabolism, organic nitrogen, stress tolerance, and transport. Our data suggest that vOTUs are enriched during grass silage preservation, and they could have a role in the establishment of the bacterial community.


Assuntos
Poaceae , Silagem , Silagem/análise , Silagem/microbiologia , Bactérias/genética , Metagenoma , Metabolismo dos Carboidratos
13.
Lett Appl Microbiol ; 76(4)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36977573

RESUMO

In this research, we evaluated the effect of exogenous lactic acid bacteria and Amomum villosum essential oil (AVEO) on the chemical composition, microbial community composition, microbial functional diversity, and fermentation quality of Broussonetia papyrifera (BP) and Pennisetum sinese (PS) mixed silages. The BP:PS mixing ratios were 100:0, 70:30, 50:50, 30:70, and 0:100. After 3 and 30 days of ensiling at 22°C-25°C, microbial diversity and function, and fermentation quality, were assessed. Increasing PS content resulted in decreased ammoniacal nitrogen and pH, increased water-soluble carbohydrate content, increased relative abundance of Lactococcus and Acinetobacter, and reduced relative abundance of Caproiciproducens and Pseudomonas. A 50:50 BP:PS ratio effectively improved the fermentation quality compared to anaerobic fermentation with BP or PS alone, while AVEO treatment further improved fermentation quality by increasing Lactococcus relative abundance. Moreover, as fermentation proceeded, ensiling enhanced the 'Human diseases', 'Environmental information processing', and 'Cellular processes' functions at the first level, as well as the 'Two-component system' and 'ABC transporters' functions at the third level. Different additives affected the fermentation of BP and PS mixed silage by regulating microbial community succession and metabolic pathways during ensiling.


Assuntos
Broussonetia , Lactobacillales , Pennisetum , Zingiberaceae , Humanos , Fermentação , Pennisetum/microbiologia , Silagem/microbiologia
14.
Bioresour Technol ; 377: 128942, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36963696

RESUMO

The effects of Lactobacillus buchneri, Lactobacillus hilgardii and citric acid on organic acid production, substrate consumption, protein degradation and microbial community were investigated in this study. The results indicated that combined inoculants induced a significant increase in levels of lactic acid (43 g/kg dry matter), acetic acid (14 g/kg dry matter), butyric acid (5 g/kg dry matter), total organic acid (60 g/kg dry matter) and ammonia nitrogen (20 g/kg total nitrogen). Furthermore, citric acid addition into the combined inoculants caused a significant increase in levels of acetic acid (12 g/kg dry matter), water-soluble carbohydrate (12 g/kg dry matter) and a reduction in ammonia nitrogen formation (22 g/kg total nitrogen). Microbiologically, combining inoculants and citric acid enriched Lactobacillus buchneri and Lactobacillus hilgardii and upregulated the functional pathways related to acid production and resistance. Collectively, combining citric acid and heterofermentative inoculants was beneficial to recycle Chinese cabbage waste in producing organic acids.


Assuntos
Fibras na Dieta , Silagem , Silagem/microbiologia , Fermentação , Amônia , Anaerobiose , Ácido Acético , Nitrogênio , Zea mays
15.
Lett Appl Microbiol ; 76(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36722167

RESUMO

To investigate the characteristics of different LAB strains isolated from subtropics and their effects on Napier grass (Pennisetum purpureum Schum.) silage with two dry matter (DM) levels, sugar fermentation pattern, and growth profiles of three screened lactic acid bacteria (LAB) strains [Pediococcus pentosaceus (PP04), Weissella cibaria (WC10), and Lactobacillus plantarum (LP694)] were characterized, and then used either individually or in combination at 1.0 × 106 cfu g-1 fresh weight to inoculate grass having 15% or 25% DM. Treatments were applied: (1) no inoculant (control); (2) PP04; (3) WC10; (4) LP694; (5) M-1 (PP04: WC10 = 2:1); (6) M-2 (PP04: LP694 = 1:2); (7) M-3 (WC10: LP694 = 2:1); (8) M-4 (PP04: WC10: LP694 = 2:1:1). The results showed that all inoculations increased LAB, DM recovery, and lactic acid (LA) concentration, while decreasing pH, the ammonia nitrogen/total nitrogen (NH3-N/TN), and butyric acid (BA) concentration compared to control group in both DM. However, the effect of inoculations was very limited at 15% DM. Silages with inoculants achieved higher silage quality at 25% DM than 15% DM. The different LAB inoculants result in significant differences in silage quality, while W. cibaria decreased the pH and inhibited the growth of undesirable bacteria and those characteristics were not affected by the DM content.


Assuntos
Lactobacillales , Silagem/microbiologia , Lactobacillus , Fermentação , Valor Nutritivo , Ácido Láctico , Nitrogênio
16.
J Appl Microbiol ; 134(1)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36724244

RESUMO

AIMS: To analyze the effect of a prothioconazole- and tebuconazole-based fungicide on the yield and silage characteristics of whole-crop corn (WCC) and high-moisture ear corn (HMC) silages and on the fungal community dynamics from the harvest to aerobic exposure. METHODS AND RESULTS: Corn were untreated (NT) or treated (T) with a prothioconazole- and tebuconazole-based fungicide and harvested as WCC and HMC. Silages were conserved for 60 and 160 d and subjected to an aerobic stability test. The fungicide increased the yield per hectare however, it did not affect the main nutritional characteristics of WCC or HMC. The main chemical, fermentative and microbial characteristics, dry matter (DM) losses and aerobic stability were mainly affected by the conservation time, regardless of the treatment. Fusarium, Alternaria, Aspergillus, and Penicillium genera were identified as dominant before ensiling, but Aspergillus and Penicillium became dominant after silo opening and aerobic exposure. Yeast population during ensiling and aerobic deterioration resulted in a simplification, with Pichia and Kazachstania genera being dominant. CONCLUSIONS: The application of fungicide improved the DM, starch, and net energy for lactation (NEL) yield per hectare but had no consistent effect on the microbial and fermentative silage quality and aerobic stability.


Assuntos
Fungicidas Industriais , Silagem , Silagem/microbiologia , Fungicidas Industriais/farmacologia , Zea mays/microbiologia , Fermentação , Aerobiose
17.
Lett Appl Microbiol ; 76(1)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36688771

RESUMO

The present study aimed to evaluate the effects of delayed harvest and storage length on fermentation products, bacterial community, and metabolic shifts of elephant grass silage. The late-harvested elephant grass (LG) was naturally fermented (NLG) for 1, 3, 7, 15, 30, and 60 days, respectively. After 60-day ensiling, NLG displayed homolactic fermentation with low pH value, butyric acid, and ammonia nitrogen concentrations, and high lactic acid concentration, and ratio of lactic acid to acetic acid. Pseudomonas, Sphingomonas, and Pantoea dominated the bacterial community in LG, but Lactobacillus, Lactococcus, and Pediococcus were the advantageous genera in a 3-day and 60-day NLG. The correlation heatmap revealed that Acetobacter was positively related to acetic acid, ethanol, ammonia nitrogen, and butyric acid concentrations. There were distinct differences in the KEGG (Kyoto Encyclopedia of Genes and Genomes) metabolic profiles of fresh and ensiled LG. Ensiling suppressed the metabolism of amino acid, vitamins, and energy, while promoted the metabolism of carbohydrate. The LG can be well-fermented without additives, but its low crude protein content should not be ignored when applied in agricultural practice. The ensiling process remarkably affected the fermentation quality, bacterial community, and metabolic profiles of NLG.


Assuntos
Amônia , Silagem , Fermentação , Ácido Butírico/metabolismo , Silagem/microbiologia , Amônia/metabolismo , Bactérias , Ácido Acético/metabolismo , Ácido Láctico/metabolismo , Metaboloma
18.
J Environ Sci Health B ; 58(1): 45-50, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36661390

RESUMO

Medium chain fatty acid (MCFA) treatment (0.75% C6, hexanoic; C8, octanoic; C10, decanoic; or equal proportion mixtures of C6:C8:C10:C12 or C8:C10/g; C12 = dodecanoic acid) of aerobically-exposed corn silage on spoilage and pathogenic microbes and rumen fermentation were evaluated in vitro. After 24 h aerobic incubation (37 °C), microbial enumeration revealed 3 log10 colony-forming units (CFU)/g fewer (P = 0.03) wild-type yeast and molds in C8:C10-treated silage than controls. Compared with controls, wild-type enterococci decreased (P < 0.01) in all treatments except the C6:C8:C10:C12 mixture; lactic acid bacteria were decreased (P < 0.01) in all treatments except C6 and the C6:C8:C10:C12 mixture. Total aerobes and inoculated Staphylococcus aureus or Listeria monocytogenes were unaffected by treatment (P > 0.05). Anaerobic incubation (24 h at 39 °C) of ruminal fluid (10 mL) with 0.02 g overnight air-exposed MCFA-treated corn silage revealed higher hydrogen accumulations (P = 0.03) with the C8:C10 mixture than controls. Methane, acetate, propionate, butyrate, or estimates of fermented hexose were unaffected. Acetate:propionate ratios were higher (P < 0.01) and fermentation efficiencies were marginally lower (P < 0.01) with C8- or C8:C10-treated silage than controls. Further research is warranted to optimize treatments to target unwanted microbes without adversely affecting beneficial microbes.


Assuntos
Rúmen , Silagem , Animais , Silagem/análise , Silagem/microbiologia , Rúmen/microbiologia , Zea mays , Propionatos/metabolismo , Fermentação , Ácidos Graxos/metabolismo , Dieta
19.
Microbiol Spectr ; 11(1): e0365922, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36645314

RESUMO

The efficient storage of materials before bioethanol production could be key to improving pretreatment protocol and facilitating biodegradation, in turn improving the cost-effectiveness of biomass utilization. Biological inoculants were investigated for their effects on ensiling performance, biodegradability of silage materials, and final bioethanol yield from sweet sorghum. Two cellulolytic microbial consortia (CF and PY) were used to inoculate silages of sweet sorghum, with and without combined lactic acid bacteria (Xa), for up to 60 days of ensiling. We found that the consortia notably decreased pH and ammonia nitrogen content while increasing lactic acid/acetic acid ratios. The microbes also functioned in synergy with Xa, significantly reducing lignocellulose content and improving biomass preservation. First-order exponential decay models captured the kinetics of nonstructural carbohydrates and suggested high water-soluble carbohydrate (grams per kilogram dry matter [DM]) preservation potential in PY-Xa (33.48), followed by CF-Xa (30.51). Combined addition efficiently improved enzymatic hydrolysis and enhanced bioethanol yield, and sweet sorghum treated with PY-Xa had the highest ethanol yield (28.42 g L-1). Thus, combined bioaugmentation of synergistic microbes provides an effective method of improving biomass preservation and bioethanol production from sweet sorghum silages. IMPORTANCE Ensiling is an effective storage approach to ensure stable year-round supply for downstream biofuel production; it offers combined facilities of storage and pretreatment. There are challenges in ensiling sweet sorghum due to its coarse structure and high fiber content. This study provides a meaningful evaluation of the effects of adding microbial consortia, with and without lactic acid bacteria, on changes in key properties of sweet sorghum. This study highlighted the bioaugmented ensiling using cellulolytic synergistic microbes to outline a cost-effective strategy to store and pretreat sweet sorghum for bioethanol production.


Assuntos
Lactobacillales , Sorghum , Sorghum/química , Sorghum/microbiologia , Silagem/análise , Silagem/microbiologia , Fermentação , Biomassa , Consórcios Microbianos
20.
Microbiol Res ; 266: 127212, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36240665

RESUMO

Ensiling is a microbial-driven process used to preserve fresh forage in bio-refinery and animal production. The biochemical changes that ensue during ensiling have aided the search for new silage additives, emphasizing the potential of certain microbial strains that are more efficient in biopreservation. Lactic acid bacteria (LAB) species are widely recognized for their varied application as additives in the fermentation of crops or forage biomasses during ensiling. However, inconsistency in silage quality in recent times could be interpreted by the lack of information on gene expression and molecular mechanisms of microbiota involved in silage production. Modern research has focused on unraveling nutrient-rich animal feed with improved LAB inoculants. Therefore, this review elucidates the role of LAB inoculants in silage production as well as the modern biotechnology approaches, including metabolomics, proteomics, metagenomics, genomics, transcriptomics, and genetic manipulation, which are powerful tools for identifying, improving, and developing high-performance LAB strains. In addition, the review highlighted the trends and future perspectives of LAB development for silage improvement, pertinent for animal feed breakthroughs in sustainable agriculture.


Assuntos
Inoculantes Agrícolas , Lactobacillales , Animais , Silagem/análise , Silagem/microbiologia , Lactobacillus/genética , Lactobacillus/metabolismo , Fermentação , Biotecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...